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Load Modeling 
Timescale of Interest 
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Load Modeling in WECC 
• Load Model Structure: 

– Composite load model in WECC production 
programs 

– Explicit load representation 

• Load Model Data 

• System Impact Studies:  
– Sensitivity, Validation, System Performance  
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WECC Composite Load Model 
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Load Model Structure 
• WECC developed EPCL routines for explicit load 

representation in PSLF program in 2004–05: 
– Add Transformer 
– Add Feeder Equivalent 
– Create Load Composition 

• WECC developed a user-defined model of single-phase 
residential air-conditioners 

 
• WECC is working with GE on developing a composite 

load model in PSLF program 
– Specifications are developed in March 2006 
– Several releases have been tested since April 2007  
– Final version is expected in Q1 of 2009 
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Single-Phase A/C 
Compressor Motor Model 
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A/C Compressor Motor 
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Single-Phase Motors – Steady-State 

 
(a) Compressor motor in a 3-ton air-conditioning unit 

 Total Main Auxiliary(*) 
Real Power, W 3180 1910 1270 
Reactive Power, VAR 730 1645 -915 
Power Factor, Per Unit 0.974 0.758 -0.81 

 
(b) Compressor motor in a 3.5-ton air-conditioning unit 
 Total Main Auxiliary(*) 

Real Power, W 3790 2500 1290 
Reactive Power, VAR 800 2000 -1200 
Power Factor, Per Unit 0.978 0.781 -0.732 

 

Notice high power factor 
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Single-Phase Motors – Steady-State 

Compressor Power vs. Ambient Temperature
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Compressor Motor Tests – 
Motor Inertia 

310 mm 

75 mm 

E.g. 3.5-ton compressor motor: Weight: 4.6 kg 

 H = 0.03 – 0.05 seconds 
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Compressor 
Motor Tests 
– Voltage 
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Compressor Motor Tests –  
Power-Voltage Trajectories 
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1φ – AC Motor Tests 
• Compressor motor is 1-phase capacitor-run motor, 

has 2 windings 

• Nominal power factor is relatively high 0.95 – 0.97   

• Compressor load and stall voltage increase with 
temperature 

• Compressor motor inertia is very low (~0.05 sec) 

• Compressor motor is non-symmetric, non-symmetry 
becomes more pronounced as voltage declines  

• Once the motor stalls it is likely to remain stalled until 
coolant pressure is equalized, very few motors can 
re-start 
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Single-Phase Motor Models 
• Three-phase motor models cannot represent 

behavior of single-phase motors: 
– Stalling phenomenon (3-phase motor model usually 

stalls at much lower voltages) 
– Real and reactive power when stalled 
– Steady-state sensitivities of real and reactive power 

with respect to voltage and frequency 
 

• Single-phase motor models exist but require 
point-of-wave simulations 
– Not acceptable for positive-sequence grid simulators 

which use ¼ cycle time step 



16 

Single-Phase Motor Models 

• Phasor Models  

• Performance-Type Models 
– Several variations 

• Hybrid model 
– Originally developed by SCE, enhanced by EPRI 

 

• Single-Phase Waveform Conversion 
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Phasor Model* 

 * This model was developed by Bernard Lesieutre at LBNL, and his 
research was funded by California Energy Commission’s Public Energy 
Research Program, WA# MR-049, through the California Institute for 
Energy and Environment, Award Number MTX-060-1. 
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Phasor Model 
• Can be simulated with ¼ cycle time step used in 

the grid simulators 

• Uses differential equations to represent motor 
dynamics 

• Matches well most tests: 
– Voltage steps, ramp, oscillations 

– Frequency steps 

– Correctly identifies faults when compressor motor 
stalls from the faults when compressor motor re-
accelerates  
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Phasor Model 
• Outstanding research issues: 

– Torque model: Simulated inertia had to reduced to 
about ½ of the measured to reproduce  motor stalling. 
This may be because of torque of a reciprocating 
compressor is not modeled appropriately when motor 
stalls. Higher inertia fits well with the oscillation tests. 
Bernie plans to repeat the tests for a scroll 
compressor.  

• Outstanding implementation issues: 
– John Undrill is working on “motorc” model in GE 

PSLF. Still, need to reconcile Bernie’s MATLAB model 
and John’s “motorc” model 
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Phasor Model 
• The model has been useful in developing 

understanding of single-phase motors. The 
model will be a valuable addition to grid 
simulators as a stand-alone model to study 
specific motor behavior. 

• The model, however, may not be the best choice 
for grid-level studies, as the model precision is 
lost when representing an aggregate behavior of 
multiple motors in a feeder.  
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AC Motor Model 
• Grid-simulation model 

– Simulation of the impact of air-conditioning 
loads on the grid dynamic performance  

• Equipment model 

– Gain the insight in the dynamic behavior of 
air-conditioning units 

• Coordination and cross-calibration of 
the models 
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Performance-Type Models 
• The model has two states: running and 

stalled 

• The transition from running to stalled state 
is done based on the motor voltage 

• Running state is represented with static 
exponential models 

• Stalled state is represented with an 
equivalent impedance RSTALL + j XSTALL 
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BPA Performance Model 
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Performance Model 
• Easy to implement  

• Model provides good representation of the motor 
real and reactive power for slow variations of 
voltage and frequency 

• Model does not capture well voltage and 
frequency dynamics above 0.7 Hz. 

• Model is “happier” to stall than the actual motor 

• Model captures well motor current, real and 
reactive power during the stall condition 
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1φ - AC Unit Model 
Model Includes: 

• Compressor Motor Model 

• Thermal Relay Model 

• Under-Voltage Relay (proposed by SCE) Model 

• Condensing Unit Controls / Contactors 

 

Model Does NOT Include: 

• Indoor and Outdoor fans are modeled separately  
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Thermal Relay Characteristic
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WECC Status 
• AC-Motor Model Development: 

– Include “performance” – type AC compressor model in a WECC 
composite load model  

– Continue development of the “motorc” model as a stand-alone 
model in power system simulators 

– WECC is preparing a detailed report on 1-φ compressor testing 
and modeling 

• Composite load model is expected to be done in Q1 2009: 
– Prototype is currently available in GE PSLF 16.1 

– Outstanding development – 1-phase motors, connect to UVLS 
and UFLS data records 

– Model acceptance tests and system performance studies 

– Load composition data 



30 

Load Model Studies 
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Load Model Studies 

Simulations done by Robert Tucker, SCE 

Explicit load 
representation 

“Performance” model 
for 1phase A/C units 



32 

System Studies 

• AC Units Stall: 
– A grid fault turns into a “wide-area” fault 

– Represents a risk to voltage stability 
• Risk of generator reducing reactive power by OEL 

• Risk of operation of Zone 3 protection 

– Need to disconnect stalled AC units from the grid 

– Need to contain the affected area 

• AC Units are disconnected: 
– “Your risks can change rapidly” 

– Risk of major over-voltages, equipment damage and protective 
tripping  

– Dynamic reactive resources help 
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Studies of Solutions 
3-hase fault 
Hassayampa – Palo Verde 
Normal clearing 
 
Explicit load representation 
 
“Performance” A/C model 
 
Residential AC is 30% of load  

Baseline simulation 
20% of a/c tripped by UV relay 
30% of a/c tripped by UV relay 
60% of a/c tripped by UV relay 
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Our Viewpoint 
• Large metro areas: 

– Increasing amount of air-conditioning load 
– Limited dynamic voltage support – generators are remote and 

VARS do not travel well 
– Prone to dynamic voltage stability problems 

• BPA view of the risks: 
– Risk of voltage collapse developing in a metro area 
– Risk of voltage collapse cascading outside metro area 
– Risk of extreme over-voltages 

• Solutions: 
– Equipment-level solutions 
– System solutions – dynamic VARs are needed 
– Special Protection Schemes to prevent outage spread 
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