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Executive Summary 

This report serves as an addendum to the report “2015 Eastern Interconnect Baselining and Analysis 

Report” (Amidan, Follum, and Freeman, 2015).  This addendum report investigates the following: 

 the impact of shorter record lengths and of adding a daily regularization term to the date/time 

models for angle pair measurements, 

 additional development of a method to monitor the trend in phase angle pairs, 

 the effect of changing the length of time to determine a baseline, when calculating atypical 

events, and 

 a comparison between quantitatively discovered atypical events and actual events. 

The purpose of the Date/Time Modeling approach is to calculate normal operation ranges for phase 

angle pairs.  The model uses the effects due to the day of week and hour of the day to predict the next 

day’s phase angle pair difference values and to create these ranges.  A daily regularization term was 

added to the model.  This term was the value of the phase angle pair at midnight (although any other time 

of day could also work).  It was found that adding this term helped adjust to changes in the system 

configuration faster.  This allowed the interval ranges to better track the changes in the system, resulting 

in less deviation from the normal operation ranges.  When adding the regularization term, it is important 

to note that this term could be unintentionally masking a change in conditions that could have occurred at 

the same time.   

Originally, the Date/Time Model used 4 weeks of data to help train the model to best capture the 

effects due to the day of week and hour of day.  Using a 1 week, 2 week, and 3 week window was 

investigated.  Results showed that 1 week and 2 week windows resulted in a lot more data being 

identified as abnormal (outside of the normal operational ranges).  The 3 week window performed very 

similarly with the 4 week window.  It is recommended that the window used to train the Date/Time 

Model be at least 3 weeks.  Results from the 3 week and 4 week window ranges were compared to ranges 

determined by EPG.  Ranges were generally tighter for the Date/Time Model and more variable as the 

ranges are dynamically calculated each day. 

A complementary method to the date/time model is a method of indicating when the phase angle 

separation has a significant trend.  Our initial look into this method showed promise.  Further 

development of this method could help identify unusual grid behavior that develops over the course of 

several minutes or even hours.   

Multivariate baselining was discussed in the previous report and is used to help identify unusual grid 

behavior.  It was decided to investigate how the length of the baseline influences the identification of 

unusual data points.  The use of 2 week, 1 month, and 2 month baselines were investigated.  It was found 

that unusual events determined using the 2 month baseline were not the same as the 2 week or 1 month 

determined unusual events.  This indicates that the baseline did not have enough time to stabilize.  Further 

investigation should be performed to determine how much time is needed to stabilize the baseline.  More 

data would be necessary to perform this investigation. 

The last investigation looked at how the baselining determined atypical events compared to actual 

events.  For this, BPA PMU data was used, because more data was available and lists of actual events 

were also available.  The baselining algorithms were not very good at determining line outages, as these 
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type of outages are generally not noticed in PMU data.  There were 3 line outages that were detected and 

these were considered major line outages.  Frequency events were also compared.  The baselining 

algorithms detected all the frequency events that happened within the footprint of the data.  The 

baselining algorithms found an additional possible frequency event that looked like the others, but had not 

been detected.   The baselining algorithms also found 3 other events that were not on any actual event 

lists.  These events were voltage related and two of them were based on spikes in the voltage 

measurements.  The other event was a gradual increase that resulted in a long time period of voltage 

measurements outside of the normal values.  This anomaly was discovered relying upon multiple 

variables and would have most likely not been detected using a single variable baselining approach. 
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1.0 Introduction 

The proliferation of phasor measurement units (PMUs) in power systems has made new monitoring 

and analysis applications possible. Where supervisory control and data acquisition (SCADA) data is 

limited by its low reporting rate and lack of synchronization, PMU data can provide tremendous benefits. 

At the same time, these qualities tend to lead to vast volumes of PMU data that cannot be practically 

analyzed with conventional techniques. To address the data volume challenges of PMU data while 

developing new analysis capabilities, a DOE funded project pairing the research organizations Pacific 

Northwest National Laboratory (PNNL) and Electric Power Group (EPG) with Eastern Interconnection 

(EI) system operators PJM, MISO, NYSO, and ISO-NE was undertaken. Results of the PNNL portion of 

the project as of November 2015 were reported in (Amidan, 2015). This report serves as an addendum to 

(Amidan, 2015) to discuss additional analyses that were completed after the primary report was 

published. 

One of the efforts detailed in (Amidan, 2015) was the development of date/time models for voltage 

angle pair measurements. These models, which took the day of the week and hour of the day as inputs, 

predict the following day’s normal behavior with upper and lower ranges. In (Amidan, 2015), the model 

is developed using a sliding window of four weeks of past data. In this report, the impacts of shorter 

record lengths and of a daily regularization term are examined. The ranges are also compared with those 

produced by EPG’s methods. 

The results in (Amidan, 2015) for the date/time model were generated using a set of data spanning 

from December 15, 2013 to February 15, 2014. This set of data is referred to as the Winter 2014 dataset. 

In this addendum, results from application of the methods to the Fall 2014 dataset, which spans 

September 1, 2014 through November 1, 2014 are also presented. 

Another contribution of this report is the description of a method to monitor the trend in phase angle 

pairs. The method, which is in the early stages of development, uses filtering to highlight large changes in 

the phase angle pair that take several minutes to develop. With further development, the method may 

prove useful in identifying unusual conditions that come about gradually and may otherwise go 

unnoticed. 

Amidan et al (2015) discussed ways to determine a baseline and identify atypical system conditions 

using that baseline. This report will investigate the effect of changing the amount of time to determine a 

baseline.  It will also do a comparison of atypical events to actual events to help provide insight into 

future precursor investigations.   

The results presented in this report demonstrate the successful application of new analysis techniques 

to large quantities of PMU data. The analyses highlighted system events that may be of interest to system 

operators. With further development, the methods could be used to improve the situational awareness of 

system operators.  
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2.0 Date/Time Modeling 

In power systems, abnormal phase angle values can be indicative of unusual, and possibly 

detrimental, system conditions. Thus, phase angle pairs can be monitored to improve the situational 

awareness of system operators. To distinguish between normal and abnormal phase angle pairs, the 

natural variation in the measurements that occur daily, weekly, and seasonally should be taken into 

account. The date/time modelling approach described in (Amidan, 2015) was developed for this purpose. 

Mathematically, the date/time model in (Amidan, 2015) can be described as  

𝐴̂ = 𝜇 +𝑊𝑗 + 𝑇𝑘 + 𝜀𝑗,𝑘 

where 𝐴̂ is the predicted phase angle pair, 𝜇 is the average effect; 𝑊𝑗 accounts for the day of the week 

with 𝑗 = 1, 2,… , 7; 𝑇𝑘 accounts for the hour of the day with 𝑘 = 0, 1, … , 23; and 𝜀𝑗,𝑘 is an error term. The 

model explicitly accounts for weekly and daily variation with the 𝑊𝑗 and 𝑇𝑘 terms. By selecting the 

parameters based on a limited amount of data – a sliding window of four weeks was used in (Amidan, 

2015) – there is no need for a seasonal term. The predicted phase angle pair  𝐴̂ is actually of less interest 

than the prediction interval given by  

𝐴̂ ± 𝑡
(𝜈,1−

𝛼

2
)
𝑆𝐷(𝐴̂). 

Here 𝑡
(𝜈,1−

𝛼

2
)
 is the quantile function for a Student’s t-distribution with 𝜈 degrees of freedom. The 𝛼 term 

is the false positive rate, which is the rate at which normal data is falsely identified as abnormal. Though 

small values for 𝛼 are desirable, if it is too small the interval will become very large and uninformative. In 

this report, a value of 0.001 is used for 𝛼. Finally, 𝑆𝐷(𝐴̂) denotes the standard deviation of the predicted 

phase angle pair. For a complete description of prediction intervals see (Draper and Smith, 1998).  

In this application, the prediction interval is used to delineate between normal and abnormal data. Past 

data is used to fit the terms in the date/time model. Using the model, the prediction interval for each hour 

in the following day is generated. As the day progresses, measurements falling within the prediction 

interval are considered normal. Those falling outside the interval are considered abnormal. In the 

following sections, follow-on work to the date/time model described in (Amidan, 2015) is discussed. 

2.1 Addition of a Regularization Term 

A significant challenge with the date/time modeling approach is adapting to occasional changes in 

system topology. For example, generators are regularly taken out of service for maintenance. Such 

changes impact phase angle pair values and adjust the ranges that constitute normal system behavior. For 

example, consider Figure 1. This plot shows the Arcadian-Goodings phase angle pair from the Winter 

2014 dataset in red along with the prediction interval generated by the date/time model in (Amidan, 2015) 

in black. Note that during day 47 a significant shift in the phase angle occurs. The cause of this change is 

unknown. As desired, the measurements quickly fall outside the prediction interval after the change. Note, 

though, that because four weeks of past data was used to build the model, the prediction interval does not 
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adjust to the new phase angle pair values over the subsequent days. To increase the speed with which the 

model adapts, a regularization term was added to the date/time model. 

 
Figure 1. Example performance of the original date/time model after a change in the normal range for a 

phase angle pair. Data is from the Winter 2014 Arcadian-Goodings phase angle pair 

measurements. 

Though prediction intervals for the upcoming day could be generated at any point, they were 

generated at midnight in (Amidan, 2015) as this should be a time of convenience for system operators due 

to low system stress. The value of a phase angle pair at midnight generally provides a strong indication of 

the range for normal values throughout the rest of the day. Based on this observation, it was hypothesized 

that providing the model with the phase angle pair’s value at midnight would help it adjust to changes in 

system configuration faster. 

With the additional regularization term, the model can be expressed mathematically as  

𝐴̂ = 𝜇 +𝑊𝑗 + 𝑇𝑘 +𝑀 × 𝐴̌0 + 𝜀𝑗,𝑘 

where 𝑀 is the regularization parameter, which is selected along with 𝑊𝑗 and 𝑇𝑘 using past data, 

and  𝐴̌0 is the measured phase angle pair value at midnight. If 𝐴̌0 is not available due to a problem in the 

data stream, the original date/time model is used for the day. The expression for the prediction interval is 

unchanged. At midnight, the day of the week, each hour of the day, and the phase angle pair’s value at 

midnight are fed into the model. The model then produces predictions for the phase angle pair at each 

hour of the day along with prediction intervals. If the phase angle pair leaves the prediction interval 

during the day, abnormal system conditions are detected.  When adding the regularization term, it is 

important to note that this term could be unintentionally masking a change in conditions that could have 
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occurred at the same time.  Further research could be done to determine ranges on changes to the 

regularization parameter that could be the result of abnormal system conditions. 

 By incorporating the phase angle pair’s value at midnight into the model, the prediction intervals 

better track changes in the system. Consider Figure 2, which shows the same set of data in Figure 1 but 

with prediction intervals from the updated date/time model. Note that the initial system change is again 

detected during day 47, as desired. In the days following the system change, though, the model does a 

better job of adjusting to the new system conditions.  

 
Figure 2. Example of performance of the updated date/time model after a change in the normal range for a 

phase angle pair. Data is from the Winter 2014 Arcadian-Goodings phase angle pair 

measurements. 

 As a general result, the updated date/time model was found to outperform the original. By 

incorporating the phase angle pair’s value at midnight, the model is better able to indicate the range of 

normal values for phase angle pairs, even as system topology changes occur. The update does not hinder 

the method’s ability to identify abnormal system conditions. Rather, it allows the model to adjust if those 

system conditions remain for multiple days, indicating that the change was planned and/or acceptable. 

Found to provide desirable performance using four weeks of past data, the updated date/time model was 

further tested to determine how much past data was required. 

2.2 Impact of Window Length on the Date/Time Model’s Performance 

The amount of data used to fit the parameters of the date/time model has a direct impact on the 

approach’s performance. Large quantities of data provide several observations of each day of the week 

and hour of the day, but they also make the model slow to adjust to topological changes in the system. 

Conversely, using smaller amounts of data can be problematic because too few observations are available 
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for each day of the week and/or hour of the day. The results in (Amidan, 2015) for the date/time model 

were generated using a sliding window of four weeks of data. To validate this selection, performance of 

the method using from one to four weeks of data was evaluated. 

The date/time model was used to generate prediction intervals for 33 days of data from the Fall 2014 

dataset. The proportion of data from the 33 days that was deemed abnormal was then tabulated for each of 

the window lengths. Results are presented in Figure 3. The false positive rate, denoted as 𝛼, is also 

included in the figure. This rate, which is user-selected, determines how sensitive the method is to 

abnormal data. As is true for all problems of this variety, increasing sensitivity to abnormal data requires 

an increase in the amount of normal data misidentified as abnormal. For these experiments, a false 

positive rate of 𝛼=0.001 was used. If all 33 days of data were normal, proportions of 0.001 would be 

expected in Figure 3, but because some data is expected to be abnormal, the observed proportion should 

be somewhat higher, indicating that the approach was able to identify abnormal system conditions. 

However, the extremely high proportions of data deemed abnormal using one and two week windows are 

unacceptable. The relative similarity between results obtained using three and four week windows 

indicates that either window length may be an acceptable choice. For all angle pairs, the proportion of 

data deemed abnormal is greater for the three week window than for the four week window, but the 

shorter window provides faster adjustment as system topology changes occur.  

 
Figure 3. Results from applying the date/time model to 33 days of data using sliding windows of various 

lengths. The false positive rate, 𝛼, is included for reference. 

An intuitive relationship exists between the proportion of data deemed abnormal and the range of the 

prediction interval. The range refers to the number of degrees between the upper and lower bounds of the 

prediction interval as a function of time. It constitutes the range of angles that are considered normal for a 

given time. For example, consider the interval ranges for the Goodings-Monroe phase angle pair in Figure 

4. Note that the range of the prediction interval from a date/time model based on one week of data is 

significantly smaller than for four weeks of data. Smaller ranges are desirable because they more 
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precisely specify the qualifications for normal data, but only if the proportion of data deemed abnormal is 

reasonable. Figure 4 was typical of the various phase angle pairs. The differences in range between 

prediction intervals from date/time models based on two and three weeks of data are relatively small. 

However, the impact on the proportion of data deemed abnormal is relatively significant, as can be seen 

in Figure 3 for the Goodings-Monroe phase angle pair. This result indicates that prediction intervals from 

three and four weeks of data provide improved performance over those from one and two weeks of data. 

 

Figure 4. Prediction interval ranges based on one to four weeks of data from the Goodings-Monroe phase 

angle pair. 

Figures 3 and 4 clearly demonstrate the impact the length of the window used to generate date/time 

models can have on results. When the window is too short, the model too frequently identifies data as 

abnormal. From the analysis, and further review of results, it was concluded that analyses with three and 

four week windows identified sets of events with significant overlap. Though a three week window is 

probably appropriate for use, to maintain consistency with (Amidan, 2015) and remain conservative in 

parameter selection, a four week window was used for all remaining results in this addendum. 

2.3 Comparison with EPG Results 

As mentioned previously, EPG also developed methods for identifying abnormal grid behavior by 

monitoring phase angle pairs. Like the date/time model, some of EPG’s methods identified abnormalities 

in phase angle pair values by setting thresholds. In this section, a comparison between the thresholds is 

provided. 
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The approach implemented by EPG is similar to the one based on the date/time model. Based on an 

examination of several weeks of data, a time-varying interval is established to delineate between normal 

and abnormal data. Here, a brief description of the method is provided. First, data points from the entire 

dataset are broken up by hour of the day and whether the measurement was collected on a weekday or 

weekend. Next, the mean value corresponding to each combination of hour of the day and day type is 

calculated. Finally, intervals above and below the mean value are selected to include 99% of the data. The 

resulting interval, which varies with time, specifies the range of normal data. Measurements falling 

outside of the interval are deemed abnormal.  

Both the date/time model approach and the EPG approach were applied to the Fall 2014 dataset. The 

following examples illustrate key findings when comparing the two methods. Generally, the two methods 

provided similar results. Consider, for example, the week of data with accompanying intervals in Figure 

5. The data is from the Monroe-Hanna phase angle pair. Note the distinct similarity between the intervals 

produced by the date/time and EPG methods. The most significant excursion of the measurements from 

normal behavior (occurring near the 10/15 mark) is detected by both approaches. Note the five repetitions 

of the “weekday” interval followed by two repetitions of the “weekend” interval in the EPG results. In 

contrast, the interval from the date/time model is unique each day.  

 
Figure 5. Comparison of results for one week of data. Measured data from the Monroe-Hanna phase angle 

pair are displayed along with upper and lower bounds from the date/time model and EPG 

approaches. 

To compare each method’s sensitivity to abnormal data, the proportion of data that was deemed 

abnormal was examined. The methods were again applied to 33 days of data, and windows of three and 

four weeks were used to build the date/time models. Results are presented in Figure 6. For several phase 

angle pairs the methods perform quite similarly, but overall the EPG method tends to classify a smaller 
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proportion of the data as abnormal. Note that the methods were not designed to be identical in this way, 

so it is not unexpected that they differ. To properly interpret the results in Figure 6, it is important to 

consider the ranges of the prediction intervals provided by the date/time and EPG methods.  

 
Figure 6. Comparison of proportions of data deemed abnormal from the EPG method and the date/time 

model based on three and four weeks of data. The false positive rate, 𝛼, is included for 

reference. 

 

The interval ranges for each method were compared for the various phase angle pairs. For some angle 

pairs, such as the Goodings-Palisades pair in Figure 7, the ranges are similar. Note that the prediction 

interval ranges from the date/time model are unique each day and do not vary hourly. Conversely, the 

EPG prediction interval ranges vary hourly and are not unique. Instead, the same set of ranges can be 

observed for each day during the week and for each day during the weekend.  

For most of the phase angle pairs the prediction interval ranges from the date/time model tended to be 

smaller than those from the EPG method. An example is presented in Figure 8. The increases in ranges 

from the date/time model for certain days correspond to the original model (without the regularization 

term described in Section 2.1) being used because measurements at midnight were not available. From 

Figure 8, the ability of the regularization term to tighten the bounds around the measured data is apparent.  
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Figure 7. Ranges of prediction intervals from the date/time and EPG methods for the Goodings-Palisades 

phase angle pair.  

 

 
Figure 8. Ranges of prediction intervals from the date/time and EPG methods for the Ramapo-Millbury 

phase angle pair. 
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Examination of figures similar to Figures 7 and 8 for the remaining phase angle pairs indicated that 

the date/time model tended to produce prediction intervals with smaller ranges than the EPG intervals. 

This observation explains the increased amount of data deemed abnormal by the date/time model (see 

Figure 6) and reflects the intuitive tradeoff between tightening intervals and increased amounts of data 

being classified as abnormal. Both the date/time model and EPG methods can be tuned to narrow or 

widen the prediction interval, thereby increasing or decreasing the amount of data deemed abnormal.  

Comparison of results with EPG’s method helps to validate the date/time model approach to 

categorizing data. The methods perform similarly enough to support their use. Examining the amount of 

data needed to build the date/time model also helped to establish the usefulness of the approach. Based on 

three or four weeks of past data, the date/time model can effectively predict normal behavior for the 

following day’s phase angle pairs, particularly when the value of the phase angle pair at midnight is 

incorporated into the model. Future efforts with the date/time model will utilize this parameterization. 

 

3.0 Phase Angle Trend Monitoring 

The date/time model described in the previous section is designed to inform system operators when 

the separation between two phase angle measurements has become abnormal. The method described in 

this section is intended to complement the date/time model by indicating when the phase angle separation 

has a significant trend. The motivation for this approach will be illustrated with an example. 

Consider the Goodings-Palisades phase angle pair in Figure 9. After remaining primarily between 15 

and 20 degrees for over 8 hours, the angle separation drops below 5 degrees over the course of 

approximately an hour. It was hypothesized that this type of behavior, where dramatic changes in the 

phase angle separation occur relatively quickly, could be indicative of important system changes. To 

identify such instances, the signal’s noise must be ignored to focus on the signal’s trend. This task is 

accomplished by first filtering the signal.  
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Figure 9. Example of a sudden decreasing trend in the Goodings-Palisades phase angle pair. 

A low-pass finite-impulse-response (FIR) equiripple Parks-McClellan filter with order 484 was 

designed to remove the noise that obscures the signal trends. The filter’s stop-band began at 

approximately 0.01 Hz. The impact of the filter can be seen in Figure 10, where the raw and filtered 

signals are plotted together. Note that the filtered signal captures the trend in the phase angle pair without 

being obscured by noise.  
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Figure 10. Raw and low-pass filtered data from the Goodings-Palisades phase angle pair.  

To quantify the trend in the phase angle separation, this filtered signal was next broken into periods 

where the trend was increasing and decreasing. This operation is depicted in Figure 11, with increasing 

trends highlighted in blue and decreasing trends highlighted in red. As a final step, the individual trends in 

Figure 11 are plotted in succession in Figure 12. Note the continuation of the color coding from Figure 11 

to Figure 12. In Figure 12, the trend is reset every time the filtered signal changes direction. In this way, 

periods of steady increase or decrease in the phase angle pair are highlighted. For example, the steady 

decrease in the phase angle pair that occurred between hours 9 and 10 in Figure 9 is apparent in Figure 

12. 
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Figure 11. Filtered example data from the Goodings-Palisades phase angle pair with highlighted 

increasing and decreasing trends. 

 
Figure 12. Trends in the example data from the Goodings-Palisades phase angle pair. Note the significant 

downward trend that occurs between hours 9 & 10. The trend is also apparent in Figures 9-11. 
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In examining the full two months of Fall 2014 data with the trend monitoring approach, several 

significant trends such as the one in Figure 12 were identified. The method is in the early stages of 

development, so further results are not yet available. With further development, the method could help 

identify unusual grid behavior that develops over the course of several minutes or hours. Such events may 

be of significant interest.  

 

4.0 Investigation of the Effect of Window Size on Baselining 

The Fall 2014 dataset was used to investigate the events that are discovered when using a 2 week 

baseline, a 1 month baseline, and a 2 month baseline.  Comparison of these discovered events will help 

give insight into the effects of changing the length of time for a baseline.  A baseline is a summary of 

typical behavior that future grid data can be compared to in order to determine if that data is unusual. 

Figure 13 shows the atypicality scores (larger score indicates more atypical) as calculated using a 2 

week baseline and a 2 month baseline for each minute (points on the scatterplot) of the 2 month dataset.  

The red rectangle identifies the most atypical minutes when based on a 2 week baseline, while the blue 

rectangle identifies the most atypical minutes when based on a 2 month baseline.  If there is no effect in 

going from a 2 month baseline to a 2 week baseline, the same minutes should be most atypical for both 

baselines.  As Figure 13 shows, that is not the case.  Those minutes that were deemed most atypical using 

a 2 month baseline were not the same as those deemed most atypical using a 2 week baseline. 

Figure 14 is similar to Figure 13, except that it compares the atypicality scores for each minute using 

a 1 month baseline and a 2 month baseline.  Again, the minutes that were deemed most atypical using a 2 

month baseline were not the same as those deemed most atypical using a 1 month baseline.   

This investigation shows the volatility in the baseline when smaller time periods are selected.  There 

is no stability in results when only looking at 2 weeks or 1 month of data.  This investigation does not 

look beyond 2 months; therefore, there is no discussion of whether 2 months is even enough data to 

establish a stable baseline.  Further research and more data would be needed to better understand the 

amount of time necessary to establish a stable baseline. 
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Figure 13. Atypicality Scores Using a 2 Week Baseline Versus Atypicality Scores Using a 2 Month 

Baseline 

 

 

Figure 14. Atypicality Scores Using a 1 Month Baseline Versus Atypicality Scores Using a 2 Month 

Baseline 
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5.0 Baselining Atypical Event and Actual Event Comparison 

This comparison was made at BPA (Bonneville Power Administration) using BPA PMU data.  This 

was done because BPA detected events were available for a time period in which PMU data was also 

available.  Also, there were a few years of PMU data available for analyses.  It was decided to look at 

June and July of 2015 because there appeared to be more frequency related events during those months 

(according to WECC records). Analyses were performed using the DISAT tool, which was installed at 

BPA and uses the baselining algorithms developed by PNNL. 

A list of 60 June and 49 July line outages was received from BPA.  Of those, 13 June and 11 July line 

outages involved lines connected to PMUs and so these were further investigated.  Line outages often are 

not noticeable in PMU data, so it was expected that the DISAT tool would not detect many line outages.  

The DISAT tool detected events during 2 of the June line outages and 1 of the July line outages.  Figures 

15 and 16 show how voltage behaves during these line outages.  These plots are typical of behavior for 

many locations during these times.  Note that date and location have been removed from plots in this 

section so that no identifying information is available.  The line outage in July (Figure 16) was a major 

line outage, so it was not surprising that DISAT was able to detect it in the data. 

 

Figure 15.  Example Voltage Behavior during a Line Outage in June 
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Figure 16.  Example Voltage Behavior during a Line Outage in July 

 

In addition to the line outage events, the DISAT detected events were compared to the frequency 

events that were determined by BPA during June and July 2015.  The results of these comparisons are 

found in Table 1.  Table 1 shows that DISAT was able to detect some of the frequency events in June and 

over half in July.  Further investigation into this showed that many of these frequency events were 

actually outside of the BPA system, where PMU data were not available for these analyses.  DISAT was 

able to detect each frequency event inside the BPA system (those PMUs that were available for analyses).  

In fact, DISAT detected each of the frequency events that were just outside of the BPA system.  The 

frequency events that were more distance away from the BPA system were generally not detected. 

 

Table 1.  Numbers of Frequency Events Detected by BPA and the Number of Those Detected by DISAT  

 Frequency Events 

 

Month 

Number of 

Detections 

Detected  

By DISAT 

June 2015 15 3 

July 2015 15 8 

 

 DISAT found an additional possible event that was frequency based, but not on the BPA list of 

frequency events.  Figure 17 shows the behavior of a frequency variable for a given PMU at this time.  

This same behavior was seen in frequency for the other PMUs.  This possible event was not on the BPA 

list of frequency events.   
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Figure 17.  Example Frequency Behavior During a Possible Event  

 

In addition to the frequency event that DISAT found that was not on the event list, there were 3 

additional events that DISAT found that were not on any list for the two months of data and were not 

frequency based.   

The first event was found in the voltage data (Event 1).  There were two different unusual patterns in 

some of the voltage measurements that triggered an event by DISAT.  The first pattern is very subtle and 

can be seen in Figure 18.  At about 11:13 we see a subtle shift down in voltage and, more importantly, we 

see an increase in the variability of the voltage measurement.  This was seen in voltage measurements for 

at least 5 PMUs.  The second pattern is more distinct and noticeable and is demonstrated in Figure 19.  

This unusual behavior occurs around 11:15 and it only occurs at 1 PMU.  We are not sure if these two 

patterns are related. 
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Figure 18.  Example of Subtly Unusual Behavior in Voltage (Event 1) 

 

 

Figure 19.  Example of Unusual Behavior in Voltage (Event 1)  

 

The next event (Event 2) was also identified using voltage data.  As Figure 20 shows, there was a 

disturbance that caused a spike in both directions.  Figure 21 zooms in closer around the unusual activity.  

This was specifically noticed for at least 5 PMUs.  As can be seen more clearly in Figure 21, there was 

also a small disturbance about 40 seconds before the larger one.  Figure 22 shows voltage at a different 

site during this same time period.  This also shows the slight disturbance about 40 seconds before the 

larger one, and it also shows another disturbance about 6 minutes previous and another disturbance about 
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5 minutes after the larger one.  Further investigation would be necessary to determine if these 

disturbances were related.  Investigations, like this one, could lead to better understanding of possible pre-

cursors to events. 

 

Figure 20.  Example of Unusual Behavior in Voltage (Event 2)  

 

 

Figure 21.  Zoom in of Unusual Behavior from Figure 20 (minutes:seconds). 
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Figure 22.  Example of Unusual Behavior in Voltage (Event 2)  

The last detected DISAT event (Event 3) was discovered within the voltage data, but was unlike the 

first 2 events.  In this case there were no spikes in the data.  As Figure 23 and 24 show, the voltage values 

are well above the performance envelope (the gray area that defines the typical behavior).  This was 

occurring with voltage values at many of the PMUs.  Figure 23 shows the voltage values staying high and 

this was typically seen across many of the PMUs at this time.  Figure 24 shows a bump up in value 

starting around 9:20 and this behavior was only seen at one PMU.  The DISAT tool uses multivariate 

analyses to find unusual behavior, meaning that many variables are used, not just one variable.  In this 

case, there are individual voltage measurements that are a little unusual, but not significantly unusual 

when looked at individually.  Using multiple variables allows for considering the correlations between 

variables and how they are behaving collectively.  In this case, it was considered very unusual behavior 

collectively, so it was labeled as an event. 
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Figure 23.  Example of Unusual Behavior in Voltage (Event 3)  

 

 

Figure 24.  Example of Unusual Behavior in Voltage (Event 3)  

 

 

 

 





 

 

 


