On-line cascading event tracking and avoidance decision support tool

TitleOn-line cascading event tracking and avoidance decision support tool
Publication TypeThesis
Year of Publication2008
AuthorsSiddhartha Kumar Khaitan
Date Published06/2008
UniversityIowa State University
CityAmes, IA
Thesis TypeDoctoral Dissertation
ISBN Number978-0-549-68802-0
KeywordsAARD, cascading outages, CERTS, decision-support systems, situational awareness

Cascading outages in power systems are costly events that power system operators and planners actively seek to avoid. Such events can quickly result in power outages for millions of customers. Although it is unreasonable to claim that blackouts can be completely prevented, we can nonetheless reduce the frequency and impact of such high consequence events. Power operators can take actions if they have the right information provided by tools for monitoring and managing the risk of cascading outages. Such tools are being developed in this research project by identifying contingencies that could initiate cascading outages and by determining operator actions to avoid the start of a cascade.

A key to cascading outage defense is the level of grid operator situational awareness. Severe disturbances and complex unfolding of post-disturbance phenomena, including interdependent events, demand critical actions to be taken on the part of the operators, thus making operators dependent on decision support tools and automatic controls. In other industries (e.g., airline, nuclear, process control), control operators employ computational capabilities that help them predict system response and identify corrective actions. Power system operators should have a similar capability with online simulation tools.

To create an online simulator to help operators identify the potential for and actions to avoid cascades, we developed a systematic way to identify power system initiating contingencies for operational use. The work extends the conventional contingency list by including a subset of high-order contingencies identified through topology processing. The contingencies are assessed via an online, mid-term simulator, designed to provide generalized, event-based, corrective control and decision support for operators with very high computational efficiency. Speed enhancement is obtained algorithmically by employing a multi-frontal linear solver within an implicit integration scheme. The contingency selection and simulation capabilities were illustrated on two systems: a test system with six generators and the IEEE RTS-96 with 33 generators. Comparisons with commercial grade simulators indicate the developed simulator is accurate and fast.