01902nas a2200241 4500008003900000022001300039245005900052210005800111260001200169300001400181490000700195520121500202653001001417653002801427653002701455653002001482653001301502100001901515700001801534700002001552700001401572856007401586 2013 d a0142061500aRisk-limiting dispatch for integrating renewable power0 aRisklimiting dispatch for integrating renewable power c01/2013 a615 - 6280 v443 aRisk-limiting dispatch or RLD is formulated as the optimal solution to a multi-stage, stochastic decision problem. At each stage, the system operator (SO) purchases forward energy and reserve capacity over a block or interval of time. The blocks get shorter as operations approach real time. Each decision is based on the most recent available information, including demand, renewable power, weather forecasts. The accumulated energy blocks must at each time t match the net demand D(t) = L(t) − W(t). The load L and renewable power W are both random processes. The expected cost of a dispatch is the sum of the costs of the energy and reserve capacity and the penalty or risk from mismatch between net demand and energy supply. The paper derives computable ‘closed-form’ formulas for RLD. Numerical examples demonstrate that the minimum expected cost can be substantially reduced by recognizing that risk from current decisions can be mitigated by future decisions; by additional intra-day energy and reserve capacity markets; and by better forecasts. These reductions are quantified and can be used to explore changes in the SO’s decision structure, forecasting technology, and renewable penetration.10aCERTS10areliability and markets10arenewables integration10areserve markets10aRM11-0061 aRajagopal, Ram1 aBitar, Eilyan1 aVaraiya, Pravin1 aWu, Felix uhttps://certs.lbl.gov/publications/risk-limiting-dispatch-integrating